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PREFACE

This volume is a collection of papers presented at the Symposium on

Numerical Boundary Condition Procedures held at Ames Research Center, NASA,

October 19-20, 1981. The purpose of this symposium was to provide a forum

for the presentation and interchange of recent technical findings in the field

of numerical boundary approximations. The symposium was held in conjunction

with the Symposium on Multigrid Methods, and both were sponsored by the

Applied Computational Aerodynamics and Computational Fluid Dynamics Branches

at Ames.

Probably, the single most important aspect in the successful application

of any numerical technique in solving gas dynamic problems is the proper

treatment of the impermeable and permeable boundaries that encompass the

computational line, plane, or volume. Papers were solicited in this research

area which utilized new or existing numerical boundary condition procedures

for various types of boundaries and governing equations.

It is apparent from the contributed papers that computational fluid

dynamicists as well as numerical analysts are quite active in this discipline.

The papers cover a wide spectrum of research on topics that include numerical

procedures for treating inflow and outflow boundaries, steady and unsteady

discontinuous surfaces such as shock waves and slip surfaces, far field bound-

ary conditions, and multiblock grids. In addition, papers were presented

which consider the effects of numerical boundary approximations on stability,

accuracy, and convergence rate of the numerical solution.

The symposium presented three invited and over nineteen contributed

papers. The invited speakers were Dr. A. Bayliss, Prof. G. Moretti, and

Prof. B. Gustafsson. Nearly all of the papers presented at the symposium

appear in this proceedings. Those which do not, will appear as a supplement.

Paul Kutler
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UNCONDITIONAL INSTABILITY OF INFLOW-DEPENDENT BOUNDARY CONDITIONS IN

DIFFERENCE APPROXIMATIONS TO HYPERBOLIC SYSTEMS

Eitan Tadmor

Department of Applied Mathematics

California Institute of Technology

Pasadena, California 91125

ABSTRACT

In this paper we study the stability of finite difference

approximations to initial-boundary hyperbolic systems. As is well-known, a

proper specification of boundary conditions for such systems is essential

for their solutions to be well-defined. We prove a discrete analogue of the

above - if the numerical boundary conditions are consistent with an inflow

part of the problem, they render the overall computation unstable. An

example of the inviscid gasdynamics equations is considered.

1. INTRODUCTION - WELL DEFINED HYPERBOLIC SYSTEM

We consider the first order hyperbolic system

8u au
(I.1a) _ + A(x) _x = F(x,t), t > 0 ,

with initial data

(1.1b) u(x,0) = f(x), t = 0 ,

in the first quarter of the plane 0 _ x < =. Here u _ u(x,t) is the N-

dimensional vector of unknowns and by hyperbolicity we mean that the

(nonsingular) coefficient matrix A 5 A(x) is similar to a real diagonal
h

(1.2)
TAT -1 = A _ diag(ll,...,AN) ,

A 1 ) ... _ l£ > 0 > l£+ 1 ) ''' ) lN, Aj H Xj(X) .

Sponsored in part by the United States Army under Contract No. DAAG29-80-C-

0041.
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The system (I .la) - rewritten in its characteristic form

(1.3) _-_+ A _x ffi

(" denotes multiplication by T on the left), asserts that the

characteristic variables uj are uniquely determined by the forcing terms

Fj along the characteristic curves _. (t) + I (xj) = 0. The last N - £J J
of these curves are outgoing curves impinging on the boundary x = 0 from

the right, each of which carries one piece of initial data; thus, exactly

N - £ pieces of information flow toward the left boundary x = 0; these

are the last N - £ outflow components of u associated with

x'3 = -_'3 > 0'£_j_N'I It therefore follows that for the system (I .I) to be

uniquely solvable, exactly £ additional pieces of information must be

provided at the boundary x = 0,

(1.4a) BU]x=0 = G, rank [B] = £ .

The requirement of these boundary conditions to be on top of the

predetermined outflow components can be expressed as follows (Hersh [1]):

For all nontrivial $ in the eigenspace #+ spanned by the

eigenvectors {_j }£ associated with the positive eigenvalues
9=I

we have

{lj}_ 1'=

(1.4b) B$ _ 0 .

Had the system (1.1a) been given to us in its characteristic form (1.3), the

boundary conditions (1.4) then can be reformulated as the standard

reflection

(I .5) u = Bu +

where u = (u+,u-) partitioned corresponding to its inflow and outflow

parts. The first £ inflow characteristic variables u+ are then

everywhere determined via (1.5) and (1.1b) along the ingoing characteristics

x" = -_" < 0'1(j(£;i combined with the N - £ outflow pieces of data, the3 3
solution u is then well defined throughout the region of integration.

Example. The linearized inviscid 1 - D gasdynamics equations take the

primitive form (I)

(E.la) _-_ + A = F, 0 _ x < _, t > 0

(1)Neglecting low order terms due to the linearization.
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where u - (p,U,p) t are the density velocity and pressure respectively,

F stands for the external forces and

(E .Ib) A =

t
with (_,n,_)

The system is hyperbolic since

2
c

T = 0

0

n _ o

0 n I/_ y = ratio of specific heats

0 Y_ n

denoting the corresponding variables we linearize about.

A

0

_c

-_c

is diagonalizable by

-I

1 , c = 7_

1

TAT -I - diag(q,n + c,n - c) •

We consider the subsonic inflow case 0 < n < c; two boundary conditions

are required at x = 0 to complement the only predetermined outflow

variable u3 _ p - _cU associated with A _ n - c < 0. While prescribing
the two conditions one should neither set _undary values for the

predetermined p - _cU. ^, nor should he prescribe only Ulx=0 and

Plx=0 (or otherwise t_wo independent relations will again set values

f6r- p - _CUlx=0). Failure to satisfy either one of the above constraints

will either imply inconsistency, or at best, the consistent condition will

give no new information and we will still be missing one piece of data at

the boundary. Both cases are saved by requiring (1.4b) to hold:

For all u 5 (p,U,p) t _ 0 in span{#l,_ 2} where _1 = (2_c'0'_)t'

#2 = (_c'c2'_c3)t corresponding to AI = n > 0, _2 = n + c > 0 we should

have Bu _ 0. Indeed, requiring B# I # 0 amounts to the requirement of not

imposing Ulx=0 and plx= 0 alone (i.e, without involving Plx=0 ), while

B# 2 # 0 (or -- which is the same thing -- B(2_2 - _1 ) # 0) prevent us

from prescribing p - _CUlx=0. We are then assured that we have two

genuinely additional boundary conditions complementing the third

predetermined outflow one (for more details we refer to [2])°

In this paper we study difference approximations to the hyperbolic

system (1.1). We show that when our numerical boundary conditions are

zeroth-order accurate with an inflow part of the problem, they render the

overall computation unstable -- a discrete analogue of the necessary condi-

tion (1.4b). In the next section we set the exact mathematical framework

for our discussion, and proof of the main theorem is given in Section 3.

This paper was written while visiting the Mathematics Research Center,

University of Wisconsin-Madison, Madison Wisconsin, and I thank the Center

and its Director, J. Nohel for their hospitality.
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2. WELLDEFINEDDIFFERENCE APPROXIMATIONS-STATEMENT OF MAIN THEOREM

We would like to solve (1.1), (1.4) by difference approximations. In

order to do so, we introduce a mesh size Ax > 0 and a time step At > 0

such that _ _ At/Ax = const. Using the notation v_(t) _ v(_Ax,t) we

approximate (1.1) by a consistent two-step solvable basic scheme of the form

(2.1a) A (xv)vv+j(t + At) = _ A.(xg)vv+j(t) + AtHv(t),
j= -r J j=-r ]

v = r,r + I,... .

Starting with the initial data

(2.1b) v (t = 0) = f , 9 = 0,1,.0. ,

the scheme (2oia) is then used to advance in time o To enable our calcula-

tion, the r boundary values {vv(t + At)} r-1 are required at each time
• %..- f%

step, and these are obtained from solvable _ndary conditions of the form

(2 .lc) Bjg(x 9)vj (t + At) =
j=0

Bj9(x )vj(t) + AtH (t),
j=0

= 0,1,...,r - I •

Usually for obtaining v 0 (t + At) one complements the N - £ inflow values

taken from (1.4) by additional £ consistent outflow relations and in case

of higher order basic scheme, r > I, extra boundary conditions as in

(2.1c) must be provided for both the outflow and inflow components of

{v (t+ At)}r-1
V= I

We now have an overall difference approximation consisting of interior

scheme (2.1a) together with boundary conditions (2.1c) and the main property

we would like our approximation to have is stability; that is, we want small

initial perturbations not to excite our homogeneous computation but rather

to have only a small comparable affect. For, it is the stability which

guarantees the convergence of our results to the exact solution of (1.1),

(1.4), as we refine the mesh Ax,At + 0. In factllack of stability is most

likely to cause our computation to diverge. We therefore make the natural
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Assumption. 1_e basic scheme (2. la) is stable for the pure Cauchy problem
__ < v < _ ( .

We are now left with the task of determining whether our boundary

conditions (2.1c) maintain the assumed interior stability overalltor either

our careless boundary treatment renders the overall computation unstable.

During the last decade since the appearance of the works of Kreiss and his

coworkers, [3]-[5], which introduce a stability theory for approximations to

such mixed problems, many safe procedures to handle the outflow components

were analyzed (e.go [5]-[8] )o Here however, we are interested in the inflow

components whose boundary calculation is required when either the exact

inflow conditions (I .4) are not known or when extra inflow values must be

provided at {xv} r-1 . Our main result is basically a negative one telling

what one should no_Ido.

Theorem. If the boundary conditions (2.1c) are zeroth-ord_r ac_rate with

an inflow component of system (1.1), i.e., there exists _, e _ such that

(2.2)
_ +

[ _jv BjV] _, = 0,

j =0 Ix=0

v = 0,1,...,r - 1 ,

then the overall approximation (2.1) is unstable.

The above theorem is clearly the discrete analogue of the necessary

requirement (1.4b) for well-posedness; both reflect the independence of the

inflow boundary values on the differential equation. In the special case of

explicit one-leveled boundary extrapolation it was first proved by Kreiss

[9] for the scalar case, and extended substantially by Burns [10] for the

vector case. Here we give a simplified version of her proof for the general

two-leveled implicit approximation. The assumption made in [10, Assumption

3.2], that A_, A_ are polynomials in A, is removed here so our result is

also valid forJ multileveled multidimensional approximations, as can be shown

using the standard devices which for simplicity are omitted. Finally we

give a direct estimate of the unstable polynomial growth of the computed

solution. Even though such growth by itself may be accepted as weak

instability, it is rejected here due to the possible reflections at the

other (right) boundary which will then result into the untolerable

exponential instability [5].

As an example, consider any standard 5-point interior scheme

approximating the system (E.la) above. Two dimensional inflow eigenspace is

to be determined at (xl,t) and - in case the exact inflow conditions are

not known - at (x0,t) as well. According to the above theorem, any

attempt to calculate the missing values in an inflow-dependent manner, that

(I)Local stability around x = 0 is in fact enough - see Section 3.
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is using zeroth-order accurate conditions for either pc2 -p, _cU + p or

any combination of them will result into instability.

We close this section by finally noting that in general the boundary

conditions (2.1c) are obtained using consistent discretizations of the two

sources available to us - the differential system (1.1a) augmented by the

inflow boundary Conditions (1.4). By the above theorem, the approximated

inflow boundary values cannot be calculated in an inflow-dependent manner by

a consistent discretization of solely the inflow part of system (1.1a;; one

must take into account also the outflow data via oonditions (I .4;. A

detailed procedure along these lines to achieve these values with any degree

of accuracy is described in [8].

3. UNCONDITIONAL INSTABILITY-PROOF OF MAIN THEOREM

From the nature of our negative result it is sufficient to restrict

attention to the case localized about x = 0, since it is the constant

coefficient case A _ _ (0), A E A (0), _ E _ (0; E (0;
3 3 3which infers the instability of the general3_ase. 3v , Bj_ Bju ,

The solution of the homogeneous approximation (_.I; with vanishing

interior initial data f = 0 (f E (f0,...,fr_l) yet to be determined;

is given by the Cauchy formula

I / n. (z)dz, t = n'_t .
(3.1) vv(t) = 27---[F z _v

Here

operator and

F

(3.2a) _ (z_ - A )4 (z) = 0,

j=-r 3 3 u+j

is any Contour enclosing the spectrum of the underlying difference

I" ? 12
(Z)j , L {¢_ < m obeys the resolvent equation

_)=0 _)=0

'_ = r,r + I,... ,

together with the side Conditions

(3.2b) _? (z_j_ - B4wg)_j" (z) = f_,
j=0

= 0,1,...,r - 1 .

Equation (3.2a) is an ordinary difference equation with constant coefficient

matrices; its most general £ -bounded solution is given by [11]
2

(3.3) Ok(Z) = X(z)Lk(z)q, k = 0,1,... ,

where we employed the assumption of the Cauchy stability. Here X(z)
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consists of

{*m(Z)} Nr
m=l

(3.4)

Nr columns vectors - they are the N-dimensional Jordan chains

associated with the characteristic eigenvalue problem (I)

(zAj -A )_J(z)_m(Z) = 0 ;
j=-r J

L(z) is an Nr-dimentional matrix consisting of the Jordan blocks associated

with the eigenvalues < (z); and o is an Nr-dimensional free vector yet

to be determined by Nr m boundary _nditions (3.2b):

(3.5a) D(z)_ = f, D(z) = [D0(z),...,Dr_1(z) ]

where

(3.5b) Dr(z) = _ (zBj9 - Bjg)X(z)LJ(z),

j=0

= 0,1,...,r - I •

The key of the instability proof lies in the study of the singular

point z = I; indeed in what follows we will show that z = I is an

eigenvalue of the problem whose eigenprojection has a polynomial growth;

this in turn implies the unstable polynomial growth of the whole difference

operator. In order to do so, we are now going to use the consistency

condition to gain more precise information about the behaviour near z = I.

In [5] it was proved by the assumption of Cauchy stability, that the

matrix L(z) in the neighbourhood of z = I takes the form [5, Theorem

9.1]

L+(z) 0 ]
(3.6a) L(z) = ,

0 L 0 (z)

where using the consistency of the interior scheme it follows that the

E-dimensional L+(z) is of the form [5, Theorem 9.3]

(3.6b) L+(z) = I - (AA+)-1(z - I) + 0(z - I) 2 ,

while the

(3.6c)

(Nr - 4) × (Nr - 4) L0(z ) satisfies

L0(z)L0(z) 4 (I - _)I,
_ > 0 •

Consider the first 4 column vectors # (z) in X(z) which we

m [I<m44

(1)By consistency it is enough to consider only simple Jordan chains

around z = I - see below.
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denote by X+(z). Inserting the corresponding eigenvalues of L+(z) from

(3.6b), Mm(Z) = I - (ll)-1(z - I) + 0(z - 1) 2, into (3.4), and using the

consistency of the basicmscheme which amounts to the standard

[A. [ [j(A - A.) - IA A]= 0
R

j=-r 3 - Aj ]= j=-r J 3 J '

we arrive to

(z - 1) •

j=-r

By the solvability _ A.e ij@

j=-r J 18=0 = 7" Aj

(z - 1)Z A. we obtain that
3

(3.7) X+(z) = X+(1) + 0(z - I),

A [I- zAl-1]_ (z) = 0(z - I) 2
j m m

is nonsingular; dividing by

X+(1) e $+ ,

take

T
~+t

where X+(1) consists of the £ column vectors %(I) _ _m - the
eigenvectors of A corresponding to its positive elgenvalues > 0.

m

We now claim that [D(z)] -I is singular at z = I. To see that we

T to be an Nr-dimensional vector whose first £ scalar components,

are uniquely determined as the solution of (see (2.2))

+

x+(1)_+ = _. ,

and the remaining Nr - £ components are taken to zero.

account (3.6b) and (3.7) we then find by (2.2)

Taking into

(3.8a) D(z)T
~+

j=0
(_jV - Bj_)X+(1)T ~+

+ 0(z - 1) = 0(z - I)

and hence for d(z) 5 det[D(z)] we conclude that

(3.8b) d(z) = 0(z - I) s s ) I .

The proof of the theorem is almost at our hands now; we consider that part

of the solution corresponding to the eigenprojection associated with z = 1:

I f n(3.9a) wv(t) = 2_i z (z)dz, _ = 0,I,..., t = n'At ,
Iz-ll=_

where bYI(3.3), (3.5), Cu(z) has the analytic representation
([D(z)] E _(z)/d(z))
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(3.9b)
_v(z) = [X+(z),X 0(z)][L+iz) 0 ] V)(z)f/d(z ) •

L0 (z)

Taking (3.8b) into account, the residue theorem implies

(3.10)

s-1

w ct)= I l es[Cz1)k- _v(z) ]
k=O I z=l

and since by (3.6b) L+(z = I) = I we finally conclude

(3.11) (n+_) °r
"w(t)U • [ I%(t) l

V=0

2_/2_ const.[t/At]snfa .

(i)

(ii)

REMARKS

AS in [10] one can show that also in our case, the resolvent condition

"_(z)N 4 const.(Izl - I) -I is violated. Indeed using the

representation (3.9b) and employing the equivalent H-norm,

_(z)R H = [ I _v(z)H(z)_v(z)] I/2 , with H(z) -[X+(z)X:(z)] -I, one
_=0

gets n_(z)ll • const.lz - II -3/2.

Unlike the case of one-leveled boundary extrapolation [10, Section 5],

it does not follow that the more accurate the boundary conditions with

an inflow part of our problem, the wDrse is the singular behaviour

at z = 1 - the R.H.S. of (3.8a) remains unaffected in the genuinely

two-leveled case.
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